281 research outputs found

    A standardisation proof for algebraic pattern calculi

    Full text link
    This work gives some insights and results on standardisation for call-by-name pattern calculi. More precisely, we define standard reductions for a pattern calculus with constructor-based data terms and patterns. This notion is based on reduction steps that are needed to match an argument with respect to a given pattern. We prove the Standardisation Theorem by using the technique developed by Takahashi and Crary for lambda-calculus. The proof is based on the fact that any development can be specified as a sequence of head steps followed by internal reductions, i.e. reductions in which no head steps are involved.Comment: In Proceedings HOR 2010, arXiv:1102.346

    Compton Scattering in Ultra-Strong Magnetic Fields: Numerical and Analytical Behavior in the Relativistic Regime

    Get PDF
    This paper explores the effects of strong magnetic fields on the Compton scattering of relativistic electrons. Recent studies of upscattering and energy loss by relativistic electrons that have used the non-relativistic, magnetic Thomson cross section for resonant scattering or the Klein-Nishina cross section for non-resonant scattering do not account for the relativistic quantum effects of strong fields (>4×1012 > 4 \times 10^{12} G). We have derived a simplified expression for the exact QED scattering cross section for the broadly-applicable case where relativistic electrons move along the magnetic field. To facilitate applications to astrophysical models, we have also developed compact approximate expressions for both the differential and total polarization-dependent cross sections, with the latter representing well the exact total QED cross section even at the high fields believed to be present in environments near the stellar surfaces of Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars. We find that strong magnetic fields significantly lower the Compton scattering cross section below and at the resonance, when the incident photon energy exceeds mec2m_ec^2 in the electron rest frame. The cross section is strongly dependent on the polarization of the final scattered photon. Below the cyclotron fundamental, mostly photons of perpendicular polarization are produced in scatterings, a situation that also arises above this resonance for sub-critical fields. However, an interesting discovery is that for super-critical fields, a preponderance of photons of parallel polarization results from scatterings above the cyclotron fundamental. This characteristic is both a relativistic and magnetic effect not present in the Thomson or Klein-Nishina limits.Comment: AASTeX format, 31 pages included 7 embedded figures, accepted for publication in The Astrophysical Journa

    Automated Reasoning and Presentation Support for Formalizing Mathematics in Mizar

    Full text link
    This paper presents a combination of several automated reasoning and proof presentation tools with the Mizar system for formalization of mathematics. The combination forms an online service called MizAR, similar to the SystemOnTPTP service for first-order automated reasoning. The main differences to SystemOnTPTP are the use of the Mizar language that is oriented towards human mathematicians (rather than the pure first-order logic used in SystemOnTPTP), and setting the service in the context of the large Mizar Mathematical Library of previous theorems,definitions, and proofs (rather than the isolated problems that are solved in SystemOnTPTP). These differences poses new challenges and new opportunities for automated reasoning and for proof presentation tools. This paper describes the overall structure of MizAR, and presents the automated reasoning systems and proof presentation tools that are combined to make MizAR a useful mathematical service.Comment: To appear in 10th International Conference on. Artificial Intelligence and Symbolic Computation AISC 201

    Load assessment and analysis of impacts in multibody systems

    Get PDF
    The evaluation of contact forces during an impact requires the use of continuous force-based methods. An accurate prediction of the impact force demands the identification of the contact parameters on a case-by-case basis. In this paper, the preimpact effective kinetic energy (Formula presented.) is put forward as an indicator of the intensity of the impact force along the contact normal direction. This represents a part of the total kinetic energy of the system that is associated with the subspace of constrained motion defined by the impact constraints at the moment of contact onset. Its value depends only on the mechanical parameters and the configuration of the system. We illustrate in this paper that this indicator can be used to characterize the impact force intensity. The suitability of this indicator is confirmed by numerical simulations and experimentsPostprint (author's final draft

    Population study for gamma-ray pulsars with the outer gap model

    Full text link
    Inspired by increase of population of γ\gamma-ray emitting pulsars by the FermiFermi telescope, we perform a population study for γ\gamma-ray emitting canonical pulsars. We use a Monte-Carlo technique to simulate the Galactic population of neutron stars and the radio pulsars. For each simulated neutron star, we consider the γ\gamma-ray emission from the outer gap accelerator in the magnetosphere. In our outer gap model, we apply the gap closure mechanism proposed by Takata et al., in which both photon-photon pair-creation and magnetic pair-creation processes are considered. Simulating the sensitivities of previous major radio surveys, our simulation predicts that there are 1823\sim 18-23 radio loud and 2634\sim 26-34 γ\gamma-ray-selected γ\gamma-ray pulsars, which can be detected with a γ\gamma-ray flux Fγ1010 erg/cm2sF_{\gamma}\ge 10^{-10}~\mathrm{erg/cm^2 s}. Applying the sensitivity of the six-month observation of the FermiFermi telescope, 40-61 radio-selected and 36-75 γ\gamma-ray selected pulsars are detected within our simulation. We show that the distributions of various pulsar parameters for the simulated γ\gamma-ray pulsars can be consistent with the observed distribution of the γ\gamma-ray pulsars detected by the FermiFermi telescope. We also predict that 64\sim 64 radio-loud and 340\sim 340 γ\gamma-ray-selected pulsars irradiate the Earth with a flux Fγ1011 erg/cm2sF_{\gamma}\ge 10^{-11}~\mathrm{erg/cm^2 s}, and most of those γ\gamma-ray pulsars are distributing with a distance more than 1~kpc and a flux Fγ1011 erg/cm2sF_{\gamma}\sim 10^{-11}~\mathrm{erg/cm^2 s}. The ration between the radio-selected and γ\gamma-ray-selected pulsars depend on the sensitivity of the radio surveys. We also discuss the Galactic distribution of the unidentified FermiFermi sources and the canonical γ\gamma-ray pulsars.Comment: 45 page, 10 figures, Accepted for publication in Ap

    The Geminga Fraction

    Get PDF
    Radio-quiet gamma-ray pulsars like Geminga may account for a number of the unidentified EGRET sources in the Galaxy. The number of Geminga-like pulsars is very sensitive to the geometry of both the gamma-ray and radio beams. Recent studies of the shape and polarization of pulse profiles of young radio pulsars have provided evidence that their radio emission originates in wide cone beams at altitudes that are a significant fraction (1 -10%) of their light cylinder radius. Such wide radio emission beams will be visible at a much larger range of observer angles than the narrow core components thought to originate at lower altitude. Using 3D geometrical modeling that includes relativistic effects from pulsar rotation, we study the visibility of such radio cone beams as well as that of the gamma-ray beams predicted by slot gap and outer gap models. From the results of this study one can obtain revised predictions for the fraction of Geminga-like, radio quiet pulsars present in the gamma-ray pulsar population

    Magnetic fileds of coalescing neutron stars and the luminosity function of short gamma-ray burst

    Full text link
    Coalescing neutron star binaries are believed to be the most reliable sources for ground-based detectors of gravitational waves and likely progenitors of short gamma-ray bursts. In the process of coalescence, magnetic fields of neutron stars can induce interesting observational manifestations and affect the form of gravitational wave signal. In this papaer we use the population synthesis method to model the expected distribution of neutron star magnetic fields during the coalescence under different assumptions on the initial parameters of neutron stars and their magnetic field evolution. We discuss possible elecotrmagnetic phenomena preceding the coalescence of magnetized neutron star binaries and the effect of magnetic field on the gravitational wave signal. We find that a log-normal (Gaussian in logarithms) distribution of the initial magnetic fields of neutron stars, which agrees with observed properties of radio pulsars, produces the distribution of the magnetic field energy during the coalescence that adequately describes the observed luminosity function of short gamma-ray bursts under different assumptions on the field evolution and initial parameters of neutron stars. This agreement lends further support to the model of coalescing neutron star binaries as progenitors of gamma-ray bursts.Comment: v.2, LATEX, 25 pages, inc. 7 ps figures, Astron. Lett., in press. Typos corrected, reference adde

    Point-Free, Set-Free Concrete Linear Algebra

    Get PDF
    International audienceWe show how a simple variant of Gaussian elimination can be used to model abstract linear algebra directly, using matrices only to represent all categories of objects, with operations such as subspace intersection and sum. We can even provide effective support for direct sums and subalgebras. We have formalized this work in Coq, and used it to develop all of the group representation theory required for the proof of the Odd Order Theorem, including results such as the Jacobson Density Theorem, Clifford's Theorem, the Jordan-Holder Theorem for modules, the Wedderburn Structure Theorem for semisimple rings (the basis for character theory).On présente une formalisation en Coq de l'algèbre linéaire où tous les objets sont représentés par des matrices, y compris les sous-espaces. Ce développement a été utilisé pour élaborer la formalisation des éléments de théorie de la représentation nécessaires à la prévue du théorème de Feit-Thompson

    Incidence Simplicial Matrices Formalized in Coq/SSReflect

    Get PDF
    International audienceSimplicial complexes are at the heart of Computational Algebraic Topology, since they give a concrete, combinatorial description of otherwise rather abstract objects which makes many important topological computations possible. The whole theory has many applications such as coding theory, robotics or digital image analysis. In this paper we present a formalization in the COQ theorem prover of simplicial complexes and their incidence matrices as well as the main theorem that gives meaning to the definition of homology groups and is a first step towards their computation
    corecore